If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+90x-486000=0
a = 1; b = 90; c = -486000;
Δ = b2-4ac
Δ = 902-4·1·(-486000)
Δ = 1952100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1952100}=\sqrt{8100*241}=\sqrt{8100}*\sqrt{241}=90\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-90\sqrt{241}}{2*1}=\frac{-90-90\sqrt{241}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+90\sqrt{241}}{2*1}=\frac{-90+90\sqrt{241}}{2} $
| 2x+√x+8=5 | | -24=u÷6 | | 3j-(j-4)+3=7 | | 3x+5=3(x+3)+2 | | 5x-15=7x+8 | | 5x-5=(1/2)(10x-10) | | 7x-6=-251 | | 5x2-49x+36=0 | | 9x^2-5x+26=0 | | 2.4x-9.6=4.8 | | 3e^2-17e-28=0 | | x^2-6x+8=0x= | | 12a+6=8 | | |2x-3|=1 | | 3(y-7)=-7(7+y) | | 1y+10=9y-2 | | 1/5=7y | | P=10+2x4 | | (7x-2)^2=31 | | 8b-2-10b=1 | | |2x-3|=3 | | 3(a+7)=25 | | 2-5/x^2=3/x | | 5(x-3)=7x+8 | | 1=7-(12-8x) | | -40-12x=-15x+11 | | -7=12n+2-6n | | x^2-3x-25=3 | | 8x-12=5x-21 | | P=10+2t | | F(-5)=3x+6 | | 3(y+4=24 |